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Approximate Solutions f o r  Certain Optimal Stopping Problems

A. John Petkau ~ t;- , ~~rS

1. INTRODUCTION

The following optimal stopping problem (which is one of several

different problems which have come to be known as the one-armed bandit

problem) has arisen both in the study of a sequential sampling inspection

plan by Chernoff and Ray (1965) and in the study of a sequential model

for clinical trials by Chernoff (1967) as well as in connection with

problems involving the sequential estimation of the common mean of two

normal populations considered by Mallik (1971) and Chernoff (1971)

Let X(t) be a Wiener process described by E[dX(t)J ~Idt and

var[dx(t)] = a2dt where ~
2 

is presumed known. One is permitted to

stop observing the process X(t) at any time t, 0 < t < N , and receive

a payoff X(t). The unknown parameter i,’ is assumed to have a

prior. What is the optimal stopping procedure?

• 
- It is easy to verify that the posterior distribution of i~ given

X(t’), 0 < t’ < t, is N(Y*(s*),s*) where

+ X(t)a
y*(s*) a 

—2 —2 
(1.1)

a +ta

and

—2 —2 —1
~ 

(o~ + to ) . (1.2)

Here s~ varies from s~ — o~ to — (~~2 + No
2)’ . Furthermore ,

— - U
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the process Y*(s*) is a Wiener process (in the -s~ scale) described

by E[dY*(s*)] = 0 and Var[dY* (s*)] = ~ds*, starting from y*(s*) = p
0

The loss upon stopping at (Y*(s*),s*) is —X(t) which from (1.1) is

a linear function of -Y~ (5 *)/5 * . Applying the transformation s = s~/s~
y (~ ) y*(5*)/5*1/2 leads to a normalized version of this stopping problem

2 — 2  —2where s varies from s~ = o
~~

ao + Na ) to s1 = 1 and in which the

stopping cost is given by d(y,s) defined by

d(y,s) —y/s (1.3)

for s > 1 with stopping enforce d at s = 1

This normalized problem is a special case of the following optimal

stopping problem: Given a Wiener process {Y(s), s > s1
} in the -s

scale described by ELdY(s)] = 0 and Var[dY(s)] = -ds and starting at

Y(s
0
) — y

0 , find the stopping time S to minimize E[d(Y (S),S)] . If

we define p(y
0,s0

) — inf b(y0,s0
) where b(y

0
,s0) is the risk associated

with a particular stopping time and the infimum is taken over all such

stopping times, p(y,s) represents the best that can be achieved once

(y,s) has been reached , irrespective of how it was reached . An optimal

procedure is then described by the continuation set C = {(y,s): p(y,s) < d(y s)}.

Chernoff (1968) has demonstrated that one should expect the solution (p , C)

of the stopping problem to be a solution of the following free boundary

problem (aC denotes the boundary of the set C) :

p (y,s) — p8 (y , s) for (y , s) c C

p(y,s) d(y , s) for (y, s) c Cc 
, (1 4)

— d~(~ .s) for (y, s) c 3C .
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Furthermore, for any such stopping problem, Van Moerbeke (1974) has shown

that one should never stop at points (y s) at which d (y, s)—d (y , s) < 0.

Applying this criterion to the normalized version of the stopping

problem described above , hereinafter referred to as the one—armed bandit

problem, one finds that ((y , s) :  y > 0, $ > 1) must be a subset of the

optimal continuation region C . Chernoff and Ray ( 1965) have shown that

for this problem C can be described as C {(y , s) :  y > i(s) , $ > l}

and have determined asymptotic expansions for the boundary curve y(s )

in the regions of large s and s close to 1. The leading terms in

these expansions are given by

i(s) — ( 2s  log ~ ) h/’2 as s + a

- 1/2y(s)  - — 0 .64 (s—l ) as s + 1

F - The scale z = y/s and t = 1/s is more appropriate for applications

and these expansions are illustrated in this scale in Chernoff and Ray

(1965) . These expansions also appear as the curves and 
~l ~~

Figure C of this paper. It is evident f rom this illustration that these

• asymptotic expansions are inadequate as a complete description of the

optimal continuation region . An approximation to the optimal continuation

region is required as a description of the optimal procedure in the region

where the asymptotic expansions are clearly inadequate .

Although it is possible that refined methods of asymptotic analysis

could lead to expansions which would provide an adequate description of

the optimal procedure , the purpose of the present paper is to describe

simple methods which lead to arbitrarily accurate numerical approximations

to the optimal continuation region for the one-armed bandit problem Although
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most of the discussion in the present paper will concentrate on the one—

armed bandit problem, these same methods could be applied with equal

facility to any optimal stopping problem of the general form described

above .

2. APPROXIMATE SOLUTIONS

In this section we indicate how approximate solutions to the one—

armed bandit problem can be obtained by replacing the problem for the

Wiener process Y(s)  by an analogous problem for a discrete-time

discrete—step process which we will denote by Y’(s’)

Consider the process Y’(s’) which starts at Y’(l+n•~ ) y’ and

is defined by Y’(s’—A ) = Y’(s’) ± each with probability . This

process is observed for at most n successive times and the cost associated

with stopping the process at any point (y ’,s’) is given by d(y’,s’)

defined by (1.3). The problem is to find a stopping time to minimize the

expected loss. We shall denote the optimal expected loss by p ’(y’,s’).

For this problem, a backward induction algorithm becomes

p ’(y ’,l+n •A) = min{d(y ’,l+n•A), ~(p ’(y ’+t~~
’2

,1+(n—1)’Lt)
- (2.1)

+

f o r  n > 1 with p ’(y ’,l) = d(y’,l) . Using the methods of Chernoff and

Petkau (1976), it is easy to verify that for this problem the optimal

stopping set can be described as ((y ’,l+n.A): y’ 
~~~~~~~ 

n > i} where

for each fixed value of ~ , {y
5
(A); n—l,2,...} is a non-increasing 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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non—positive sequence . Note that this set does not depend upon the

initial point. Further note that direct application of (2.1) yields - -

— 0 ~

Since Y’ (s’) is a process of independent increments with mean zero

and variance one per unit change in —s ’ any stopping problem for the

Wiener process Y( s)  of the previous section can be imitated by the use

of a small value of A in the Y’ (s ’) process . As A approaches zero ,

the solution of the analogous discrete problem would be expected to

converge to the solution of the Wiener process problem. In particular ,

for the one-armed bandit problem this leads to the initial approximation

(2. 2)

where ~ ( 1+n•A) denotes the optimal boundary for the one-armed bandit

— problem evaluated at s =

It remains to evaluate the sequence {~~~(A) } . Consider the Y’ (s ’)

process defined as above on the grid of points {(y ’ ,s’) :  5~ l+n•A ,

y ’ = c + k .A 1”2 ; n = 0,12 ,...,k=0, ± 1, ±2 , . . .)  . Note that the grid

is completely specified by the parameter c (for convenience , assume

• 0 c < A112) .  Examination of (2.1) with the particular form of d(y , s)

given in (1.3) reveals that for any given choice of A , if the points

• 

{(y ’ ,l+n •A) : y ’ < y *} are stopping points then so are the points

{(y ’ ,l+(n + l) .A) : y ’ 5 y *_A~ ’2 ) . This observation, together with the

fact that the sequence {~~ (A)} is non—increasing , implies that when

using the backward induction algorithm (2.1) to classify the grid points

as either stopping or continuation points,  the comparisons implied by

(2.1) need be carried out at only a single value of y’ f o r  each f ixed

value of s’ . The algorithm (2.1) can now be easily implemented in a

h~A
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direct fashion.

Due to the special nature of the one—armed bandit problem , namely

the fact that all points (y, s) with y >  0 and s ~ 1 are continuation

points , one might expect to be able to improve somewhat upon the naive

approach outlined above. Consider a particular path of the Y ’( s ’)

process originating at the point (y ’ ,s ’) = (c+2 .A L’2, l-4-n .A )  . The

path of the Y ’( s ’) process could hit the line y ’ = c+A~
”2 for the

first time at s ’ = l+ (n— l) ’A ,l+ (n—3 ) .A , ... Alternately, the path
• . . 1/2could remain above the line y ’ = c+A all the way to s’ = 1

Noting that the points (c+A~~
12

, 5 ’) are continuation points for all

s’ > 1 (since ~1(A) = 0 and the sequence y (A) is non-increasing)

leads to the relation

p~~(c+2.A V2 ,l+n.A) = 

Ji

n+l
+ 

~ % kd~~~~~~~)A ~~~~~k=l

where is the probability that an ordinary random walk starting at

0 first passes through 1 at time in and is the probability

that an ordinary random walk starting at 0 stays above —l until time

n and achieves level k—l at time n • From Feller (1968, p. 89,

Theorem 2) one f inds

0 for m even ,

(2 . 4)
1 1  ‘~ —m— . i  1 2 for m odd .m~~~in+l,

~~2/
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In addition we have the recursive relation 
~~~2 m+3 ~m 

with p
1 

=

and p2 = 0 . From Feller (1968 , p. 73 , Ballot Theorem) one also finds

tha t

= 0 for n even and k odd

= 0 for ii odd and k even , (2.5)

= 

~ t (n~~~ i) 
2 ’~ otherwise

The relation (2.3 ) provides a modif ied method of carrying out the

backward induction which we shall call the truncation method: At s’ = 1,

the risks are specified by d(y,s) . At any stage s’ = l+n•A , compute

1/2the risk at y ’ = c+2•A by means of (2.3). The risks at the levels

= c+k•A1’2 for k = l,O,-l,—� ,.~~. are computed using the algorithm

(2.1) in the fashion described above.

Returning for a moment to the one—armed bandit problem, it is well—

known (and obvious from (1.4)) that changing the stopping cost fnnction

d(y ,s) by adding to it any solution of the heat equation leaves the

optimal continuation region unchanged. For the present purposes, it is

convenient to consider the new stopping cost function d
0
(y,s) defined

by d0
(y,s) d(y,s) + y, that is,

d0(y,
s) = y — y/s (2.6)

for s > 1 with stopping enforced at s = 1 . Note that d0 (y, l) 0

Denoting the corresponding optimal risk by p~ (y,s) , the algorithm (2.1)

becomes

•-
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,1+n A) = min{d
0
(y’ , l+n A) , ~ [p~~(y I +A

]hI2 ,l+ (n— l) •A)

(2.7)

+ p~~(y~ —A~
1”2 ,l+(n—l )  .A ) J )

f o r  n > 1 with p~~(y ’ ,l) 0 . Fur ther , the relation (2.3) becomes

• p6(c+2
~~
1”2,l

~~~~
) = 

~~ 

p
~
.p
~
(c+A1”2 l+(n—m).A) . (2.8)

This reduces the computation involved in carrying out the truncation

method. -

To this point we have simply described the direct and truncation

methods of carrying out the backward induction algorithm for the Y’ (s’)

process when the motion of the process is restricted to a grid specified

by a particular value of the parameter c

It should be emphasized that carrying out the backward induction

algorithm for a particular grid simply classifies all the grid points

as either stopping or continuation points. The sequence {~~~(A)} itself

• is nuc determined. At each fixed value of s’ = 1+n•A , the algorithm

simply determines the two adjacent grid points between which the number

must lie; that is, the algor ithm determines the value of

k C— k (n ,ti,c))  such that

C + k •A~
’2 < y (A) < c + (k+ 1)•A~

”2 
. -

However , implementing the algorithm for different grids all with the

same fixed value of A but specified by a sequence of values of the

parame ter c between 0 and A1’2 allows the sequence {y~~(A ) }  to be

- - - ~~~~~~~~~~ 
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determined to within any desired degree of accuracy. This will be

indicated in more detail in the next section where the appropriate

computations for the one—armed bandit problem are described.

To this point we have presented simple methods of obtaining

heuristic initial approximations to the solutions of optimal stopping

problems for a zero drift standard Wiener process. These methods involve

replacing the Wiener process problem by an analogous discrete problem

involving dichotomous random variables. The relation of the solution

of any such Wiener process problem to the solutions of an entire class of

analogous discrete problems is considered in Chernoff and Petkau (1976).

A particular result of that paper is the following simple approximate

relation between the optimal boundary of any such Wiener process problem

and the optimal boundary of the corresponding analogous discrete problem

f o r  the Y ’(s ’) process describec~ in the previous section:

j’(l+n.A) = ~~(A) ± 0.5 A
V2 

(2.9)

(the sign being determined so as to make the continuation region for the

Wiener process problem larger). For the one—armed bandit problem, this

leads to the following refinement of (2.2)

j~(1+n.A) ~~(A) — 0.5 A1”2 - (2.10)

______________________________ _______ 
____ -
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This refinement takes the form of a “correction for continuity”,

the solution of the analogous discrete problem being corrected in order

to obtain (approximately) the solution of the Wiener process problem.

The behavior of the approximations (2.2) and (2.10) will be examined

in the next section.

3. APPLICATIONS

To illustrate the accuracy of these approximations, it would be

desirable to evaluate these approximations in a Wiener process problem

for which the exact solution is known. A normalized version of a

gambling problem discussed in Van Moerbeke (1974) is the following:

Suppose {X(s); 0 < s < 1) is a zero drift standard Wiener process and

that a gambler wins money at a constant rate whenever the process

occupies the positive x half—plane and loses money at the same

constant rate whenever the process occupies the negative x half—plane.

If the gambler is permitted to stop the process at any time s , 0 < s < 1,

what is the gambler’s optimal strategy?

This problem can be formulated as an optimal stopping problem by

defining the reward g(x,s) for stopping the process at the point (x , s)

to be

2g(x ,s ) = 1 - s + 2 x  for x > 0 ,

= 1 — s  for x~~~ O ,

the problem being to find a stopping time that maximizes the expected

reward. Van Moerbeke (1974) proves that the optimal continuation region

for this problem can be described as {(x,s): x ) i(s) , 0 < S < 1)
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where i(s) —a (l-s)~
’2 and ci is the solution of the simple equation

a • f ~ exp[Xci—A
2
/2]dA = 1 which can easily be determined to be

0

a ~ 0.5061. Modifying the reward function to be ~(x,s) = g(x,s)—2[x2+l-s]

does not change the solution of this problem and it is easily seen that

the methods of the previous section are directly applicable (in particular,

~ (x,l) 0 for x > 0)

This Wiener process problem has been approximated by three different

analogous discrete problems, those corresponding to A = 0.01, 0.0025

and 0.000625. For each fixed value of A the computations were carried

out for all grids Specified by values of the parameter c varying from

0 to A1”2 in steps of 0.001 • Thus each individual member of each of

three sequences {i (A) 1 is located to within an error of 0.001. In

addition the corrected sequences {~ *(A)} defined by i~(A) =

were evaluated. These six approximating sequences and the exact solution

x are illustrated in Figure A in the (x,s) scale. Here = {i (0.0l)),

= 
n
(0
~
0025

~~ 
x
3 

= {x~ (0.000625)} and similarly = {~~*- (0.01)) ,

= {~~ (0.0025)}, ~~ = {~~ (0.000625)} . This figure clearly illustrates

that for this particular problem whereas the approximations provided by

x1
, x2 and x3 are quite crude, the approximations provided by x~ , x~

and x~~, particularly both and x~~, are exceptionally accurate,

being virtually indistinguishable from each other and from the exact

solution. The fact that is not too a~curate reflects the fact that

when using these approximations, one must begin with a reasonably small

value of A . Indeed if we note that results from correcting the

boundary which is obtained by approximating the Wiener process on the

I
iI_t_ ~~~~~~~~~~~~~~~~ I
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interval [0,11 by a simple random walk involving only 100 time steps,

it is somewhat amazing that achieves the accuracy that it does.

Figure A

The exceptional performance of the refined approximation (2.9) in

Van Moerbeke’s problem leads us to hope that the same type of behavior

will occur in the one-armed bandit problem. In order to examine this

possibility, the one—armed bandit problem was approximated by three

different analogous discrete problems, those corresponding to A = 1.0,

0.25 and 0.0625. For each fixed value of A the computations were

carried out for the region 1 < s < 100 and for all grids specified by

values of the parameter c varying from 0 to A112 in steps of 0.01.

Thus each individual member of each of the three sequences {~~~(A)) is

located to within an error of 0.01. In addition the corrected sequences

{~*(A)) defined by j~~
(A) = j

n
(A)_0

~
5A 1”2 were evaluated. These six

approximating sequences are illustrated in Figure B. Here = {j~~(L0)),

= ~(0 25~~~ y3 
a {y (0.0625)} and similarly 

~t 
a {y*(l.0)),

= {~*(0.25)), j~ = {~*(0.0625)). This figure clearly indicates that

for the one-armed bandit problem the approximations provided by j
~ , j~

and y
~ 

are exceptionallj accurate, these curves being indistinguishable

from one another. •

Figure 8

As pointed out in the introduction, for applications of the solution

of the one—armed bandit problem, the (z,t) scale where z — y/s and

I
_
~~~

-- —-_--— -
~

-
—

-,~
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t = 1/s is more appropriate . In order to obtain an accurate approximation

to the optimal stopping boundary in the (z,t) scale in as efficient a

manner as possible, the computations werç carried out as follows:

Beginning with a very small value of A , the boundary was approximated in

a small interval of s in the manner described above. Successively

larger values of A were then employed to approximate the boundary in

successively larger intervals of s . These approximations to the optimal

boundary , determined in overlapping intervals of s , were then superimposed

to obtain the final approximation to the optimal boundary. Since the

values of A used were chosen in such a way as to yield the desired

- - accuracy, only the value c = 0 was used in these computations. The

computations were carried out using both the direct and the truncation

method. The truncation method reduced the computation time required by a

factor of approximately two. The resulting approximation to the optimal

stopping boundary is illustrated in Figure C together with the asymptotic

expansions of Chernoff and Ray (1965). Here and denote the

boundaries obtained using the asymptotic expansions for t close to 0

(s large) and t close to 1 Cs close to 1) respectively and z denotes

the boundary obtained by means of the computations described above.

Figure C

4. DISCUSSION

As indicated in the introduction, the one—armed bandit prob1.~r has

arisen in a number of statistical applications and consequently considerable

effort has been devoted to obtaining approximations to the optimal stopping
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boundary. Chernoff and Ray (1965) first formulated the problem and

were able to derive asymptotic expansions for this boundary. In a later

paper, Chernoff (1967) presents a small table of this boundary. Although

it is not indicated in the paper, this approximation was obtained by

approximating the Wiener process by a sum of independent normal random

variables and applying a backward induction to the approximating process

(private communication from Herman Chernoff). In carrying out this

backward induction the normal distribution was approximated by a discrete

distribution thus allowing the integrations involved in each stage of the

backward induction algorithm to be replaced by summations. Mallik

(1971) presents a more detailed table of this boundary and indicates

without clarification that a refined version of the technique used by

Chernoff was used to obtain his table. Another detailed table appears

in Chernoff (1971 and 1972) and it is in these references that it is

first suggested that the Y’(s’) process of Section 2 be used to obtain

an approximation to the optimal boundary for the one-armed bandit problem.

The purpose of the present paper was to describe explicitly how

this approximation could be carried out and to demonstrate that by the

use of the “correction for continuity” given in (2.9) this approximation

could be made exc’~ptiona11y accurate in an efficient manner. Obtaining

the present app::oximation to the boundary of the one-armed bandit problem

involved ten separate runs, the i-th ru~ approximating the boundary in the

region s = 1 to s = 1 + l550.A1 
using a grid determined by c 0 and

The entire computation, approximating the boundary in the

region 1 c s c 10,000 required just 36 seconds of computation time on

the IBM 370/168 at USC. The objective in the present computation was

L
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to obtain an accurate approximation in the (z,t) scale. Detailed

examination of the computer output leads to the empirical estimate that

in the (z,t) scale , for each fixed value of t , the boundary has been

located to within an error of 0.001.

For the one—armed bandit problem it is convenient to think of

a = y/5~1~
2 

= y*/s*l/2 (4.1)

as the number of standard deviations tha~t the current estimate of p

is away from 0 , and of

8 = •(a) (4.2)

(~ denotes the standard normal cumulative) as the significance of the

data for rejecting the hypothesis p = 0 in favor of the alternative

that p < 0 . Note that t — 1/s is the fraction of the total

available information already collected. Then the optimal procedure

can be regarded as stopping as soon as the hypothesis p = 0 is rejected

in favor of the alternative p < 0 at a nominal significance level.

~ (t) = $( a(t ) ) — ,(~,($)/ l/2) (4.3)

which varies with t . In variations of the one-armed bandit problem

in which the data is not normally distributed , it seems reasonable to

use this nominal significance level as a stopping criterion. In order

to facilitate future use of the results of this paper, the optimal

boundaries i(t) , &(t) and B(t) are presented in Table 1.

Table 1

I
_____ - ~~~~~~~~~~~~~~~~~~~~ r-- ~- - - -
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As indicated in the introduction, these same methods could be

applied with equal facility to any optimal stopping problem of the

general form described there. In Petka~ (1977) these methods have

been employed to obtain the optimal continuation region for a stopping

problem in which the optimal continuation region can be described as the

set {(y,s): y
1
(s) < y < y

2(s), s > 1) where y
1
(s) ~ y2(s).

The connection between such optimal stopping problems and free boundary

problems involving the heat equation of the form (1.4) makes it clear that these

same methods could be used to determine numerical solutions of such free

boundary problems. The problem of obtaining numerical solutions to

free boundary problems has received considerable attention in the

literature (see, for example, Sackett (1971) and Meyer (1977)). Whether

the methods proposed here provide a reasonable alternative to these more

general methods is a question that remains to be answered.
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Table 1. One-Armed Bandit Boundary

t ~(t) &(t) ~(t)

0.0001 —0.0353 —~~.~~3l8 0.00021
0.0002 —0.0473 —3 .3431 0..)0041
0.’)003 —0.0559 —3.2275 C.00062
0.OOC’. —C.0630 —3.1487 0.00082
0.C..C5 —3.~ 6H9 —3 .C830 0.00102
0.0006 —0.0742 —3 .0285 0.03123
C .CCC7 —0.0769 — .982 1 0.J)143
0.00C8 —0.0532 —2.9416 0.00163
0.3009 — 0 . 0 R 7 2  — 2 . ’~~05” 0.00183
0.OOIC —0 .0909 —2.6731 0.00203
0.0020 —0 .1187 —2 .6547 0.00397
C.003C —0.1381 —2.5201 0.00586 

____

0.u040 —C. l~~34 —2.4262 0.00763
0.3050 —3.1661 —2.3486 0.00942
O.0o~ 0 —C.1771 —2.2659 0.01113
0.OC?0 —0.1869 —2.2338 0.01275
0.0380 —0.1955 —2.1862 0.01440
0.0090 —0.2035 —2.1446 0.01599
0.0100 —0.2107 —2.1073 0.01754
0.02CC —C.2624 —1.8555 0.03176
0.0300 —0.2955 —1 .7062 0.04398
0.0400 —0.U96 —1.5980 0.05502
0.0500 —0 .3385 —1.5138 0.06504
0.0600 —0 .3537 —1.4441 0.07436
0.070C —0.3665 — 1.3854 0.08297
0.08CC —0.3771 — 1.3333 0.09121
0.0900 —0.3866 —1,2887 0.09875
0.1000 —0.3944 —1.24 12 0.1 0616
0.1200 —0.4074 —1.1762 0.11976
0.140t~ —0.4174 —1.1155 0.13232
0.16CC —C.4252 —1.0630 0.14390
0.1800 —0.4310 —1.0159 0.15484
0.2000 —0.4354 —0.9735 0.16516
0.25CC —0.4413 —0.8827 0.18871
0.3000 —0.4415 —0.8061 0.21008
0.3500 —0.4378 —0.7400 0.22964 

_____

0.40CC —0.4308 —0.6812 0.24788
0.4500 —0.4207 —0.6272 0.2652 7
0.50CC —0.4083 —0.5774 0.28184
0.5500 —0.3938 —0.5310 0.29771
0.6000 —0.3764 —0.4860 0.31350
0.6500 —0.3560 —0 .4416 0.32939
0.7000 —0 .3333 —0 .3983 0.34520
0.7500 —0.3074 —0 .3549 0.3o133
0.8000 —0.2774 —0.3102 0.37821
0.8500 —0.2423 —0.2628 0.39634
0.870C —0.2263 —0.2426 C.40417
0.8900 —0.2088 —0.2213 0.41243
0.9100 —0.1894 —0.1986 0.42130
0.9300 —0.1676 —0.1(38 0.43102
0.95CC —0.1421 —0 .1457 0.44206
0.96CC —0.1272 —0.1298 0.44835
0.970C —0.1103 —u .1120 0.45542
0.9800 —0.0902 —0 .0911 0.46369

— 
C.9900 —0.0639 —0.064 2 0.47440
0.9950 —0.0452 —0.0453 0.48194
1.0000 0.0 0.0 0.50000

BEST AVAILABLE COPY
----- I
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